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Four-Vector Representation of Fundamental
Particles
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Modifying a proposal by Harari and Shupe, we associate with each lepton, quark,
and gauge boson a fundamental 4-vector with entries 61 or 0. A Feynman vertex
corresponds to the addition of two fundamental vectors giving rise to a third.

In 1979, Harari [5] and Shupe [9] independently proposed a theory
according to which leptons and quarks are made up of two so-called preons,
called rishons T and V by Harari and quips 1 and 0 by Shupe, their antiparti-
cles being denoted by T and V or by 2 and 0, respectively. The idea was
that every lepton is a triple of three identical preons or antipreons, while
every quark is a triple of three nonidentical ones. Since there are exactly
three arrangements, say, of two Ts and one V, there are three different up-
quarks, said to have different colors. Similarly, one T and two Vs make up
three differently colored down-quarks.

I suggest that the preons T and V be replaced by the integers 1 and 0,
as is perhaps implicit in Shupe’s notation, and that their alleged antiparticles
be replaced by 21 and 20 5 0, respectively. The last equation is not envisaged
by Shupe, who distinguishes between 0 and 0, and it would associate the
same vector (0, 0, 0) with both neutrino and antineutrino. To cicumvent this
problem, we will distinguish between fermions and their antiparticles with
the help of a fourth integer, provisionally called the fermion number; it is 1
for leptons and quarks and 21 for their antiparticles. Both Harari and Shupe
require 6-tuples of preons to describe the structure of gauge bosons; here we
simply put their fermion number equal to 0.

1 Mathematics Department, McGill University, Montreal, Quebec H3A 2K6, Canada; e-mail:
lambek@triples.math.mcgill.ca

2253
0020-7748/00/0900-2253$18.00/0 q 2000 Plenum Publishing Corporation



2254 Lambek

Formally, we associate with each fundamental particle a fundamental
4-vector a 5 (a0, a1, a2, a3), where each ai 5 1, 21, or 0. We may also
write a 5 a0 1 ia1 1 ja2 1 ka3, where 1 5 (1, 0, 0, 0), i 5 (0, 1, 0, 0),
etc., are unit vectors. Here a0 is the fermion number, and the charge of a
particle may be calculated as

e
3

(a1 1 a2 1 a3)

where 2e is the charge of an electron.
What is presented here is not an analysis of the substructure of the

fundamental particles, but what appears to be a useful bookkeeping device.
Moreover, we shall confine attention to the first generation of particles; an
explanation of the higher generations may be found in Adler’s [1, 2] much
more sophisticated theory.

The following table shows which 4-vector is associated with each funda-
mental particle. The letters u, d, and g stand for up-quarks, down-quarks,
and gluons, respectively, and the subscripts R, B, and G refer to the colors
red, blue, and green, respectively.

Fermions

e2: 1 2 i 2 j 2 k

n: 1

uR: 1 1 j 1 k

uB: 1 1 i 1 k

uG: 1 1 i 1 j

dR: 1 2 i

dB: 1 2 j

dG: 1 2 k

Antifermions

e+: 21 1 i 1 j 1 k

n: 21

uR: 21 2 j 2 k, etc.
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Gauge bosons

g, Z 0: 0

W2: 2i 2 j 2 k

W +: i 1 j 1 k

gBG: j 2 k

gGR: 2i 1 k

gRB: i 2 j

gGB: 2j 1 k

gRG: i 2 k

gBR: 2i 1 j

Here, for example, gBG is the gluon responsible for changing color from
blue to green. We have not accounted for the two remaining gluons, which
do not effect the color of a quark.

We have thus associated 25 different 4-vectors to fundamental particles;
but the photon and the Z 0 correspond to the same 4-vector 0. Altogether
there are 34 5 81 fundamental 4-vectors and there is room to accommodate
some as yet undiscovered particles, such as those proposed in supersymmetry.

The fundamental 4-vectors live in the Abelian group Z4. Sometimes the
sum of two fundamental vectors is again fundamental; we claim that such
equations account for all possible Feynman vertices. Thus a 1 b 5 c would
correspond to the diagram

'
a

;
b

→
c

However, it is customary to replace the straight arrows by wavy arrows for
gauge bosons. Since we are dealing with a group under addition, the following
diagrams are equivalent to the above:

'
a

"
2b

→
2c

,
:
2a

;
b

→
c

For example, when b 5 0 and c 5 a, the last two diagrams describe pair
annihilation and pair creation, respectively.

We illustrate the usefulness of vector addition by looking at some double
events, all taken from Gell-Mann [4].
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(a) Two electrons exchanging a virtual photon, giving rise to the force
between them:

1 5 1 1 0, 0 1 (21) 5 21

(b) The force between quarks from a gluon exchange:

1 1 i 1 j 5 (1 1 j 1 k) 1 (i 2 k), (i 2 k) 1 (1 2 i) 5 1 2 k

1 2 i 5 (l 2 j ) 1 (2i 1 j ), (2i 1 j ) 1 (1 2 j ) 5 1 2 i.

(c) An electron turning into a neutrino and a W2, while an up-quark
turns into a down-quark:

1 2 i 2 j 2 k 5 1 1 (2i 2 j 2 k),

(2i 2 j 2 k) 1 (1 1 j 1 k) 5 1 2 i

(d) The scattering of a neutrino off a down-quark mediated by a Z0:

1 5 1 1 0, 0 1 (1 2 i) 5 1 2 i

For example, (b1) and (c) are illustrated by the following Feynman diagrams,
where the usual wavy arrows have been replaced by dashed ones:

(b1)

:

uR

;
uG

------→
gRG ;

dG

:
dR

(c)

:
n

;
e2

------→W2 ;

dR

:
uR

One is tempted to extend the 4-vector notation to composite particles,
e.g., associating the vectors 3 and 3 2 i 2 j 2 k with the neutron and proton,
respectively, both with fermion number 3. Thus, the neutron decay

n → p+ 1 e2 1 n

would be illustrated by the equation

3 5 (3 2 i 2 j 2 k) 1 (1 1 i 1 j 1 k) 1 (21)

Historically, a consideration such as this led Pauli to propose the existence
of neutrinos in the first place. This decay can also be explained at a more
fundamental level if we decompose the neutron and the proton into quarks:
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3 5 (1 2 i) 1 (1 1 i 1 j ) 1 (1 2 j )

5 (2i 2 j 2 k) 1 (1 1 j 1 k) 1 (1 1 i 1 j ) 1 (1 2 j )

5 (1 2 i 2 j 2 k) 1 (21) 1 (3 1 i 1 j 1 k)

Unfortunately, the extended notation would fail to distinguish, e.g., between
the weak gauge boson W2 of spin 1 and Yukawa’s meson p2 of spin 0.

In general, the fermion number of a colorless composite is the lepton
number plus three times the baryon number. Indeed, our bookkeeping proce-
dure would suggest that these two numbers are not preserved separately. This
would be verified, e.g., if a down-quark could be transformed into a neutrino
with the help of an as-yet-undiscovered gauge boson, (1 2 i) 1 i 5 1, as
was indeed speculated by Feynman [3].

The above discussion exploits the additive group of 4-vectors. However,
our notation suggests that we are dealing with quaternions, which also have
a multiplication such that

i2 5 j2 5 k2 5 ijk 5 21

turning the group R4 into a division ring. In fact, Adler [2] asserts that his
interest in the Harari–Shupe speculations led him to investigate quaternionic
quantum mechanics, in which the wave function lives in a quaternionic Hilbert
space. As I showed in my expository article [7], quaternions and biquaternions
have been used successfully to describe the dynamics of electrons and photons
for quite some time, and in ref. 8, I attempted to extend this approach to
other fundamental particles.

In this article I have presented a modified form of the Harari–Shupe
proposal. However, rather than claiming to represent the internal structure
of quarks and leptons, I prefer to view this notation as a grammatical restriction
on the language describing the interactions between elementary particles. It
thus plays a role rather like dimensional analysis did for classical mechanics:
this assigned to each physical quantity a 3-vector with integer components
(or rational components if electromagnetic phenomena were included).

One final question remains: which of the 81 fundamental 4-vectors are
associated with actual particles? It seems that all the known fundamental
particles (and even the undiscovered gauge boson suggested by Feynman)
are subject to the following empirical rule: The number of positive entries
in the associated 4-vector is either zero or odd, and ditto for the number of
negative entries. I would like to ascribe this rule to Benjamin Franklin,
because its enunciation depends on his arbitrary decision of which form
of electricity was to be called positive or negative, respectively. However,
according to the theory known as supersymmetry, perhaps there is no restric-
tion on the fundamental 4-vectors.
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